Exercice 1: (exo 24page 94 tome 2)

On considère un rectangle OABC tel que OA = 2OC et $\left(\frac{\rightarrow}{OA, OC} \right) = \frac{\pi}{2} [2\pi]$. La médiatrice de [OB]

coupe la droite (OB) en H' et coupe la droite (OA) en H. On note J le symétrique de O par rapport à H et J' celui de O rapport à H'.

- 1. a) Montrer que les triangles OBJ et OBJ' sont rectangles en B.
 - b) En déduire que les points B, J et J' sont alignés.
- 2. Soit f la similitude directe qui envoie J sur O et O sur J'.
 - a) Déterminer l'angle de f.
 - b) Déterminer f(B) et en déduire le centre et le rapport de f.
- 3. Soit g la similitude indirecte qui envoie J sur O et O sur J'.
 - a) Déterminer le rapport de g.
 - b) En déduire que g admet un unique point invariant que l'on notera I.
 - c) Déterminer $g \circ g(J)$ et en déduire que l'appartient à (JJ').
 - d) Construire le centre et l'axe de g.

Solution:

1. a) Les droites (BJ) et (OB) sont perpendiculaires donc OBJ est un triangle rectangle en B.

Les droites (BJ') et (OB) sont perpendiculaires donc OBJ' est un triangle rectangle en B.

- b) (BJ) \perp (BO) et (BJ') \perp (BO) donc (BJ)//(BJ') d'où les points B, J et J'.
- 2. a) $\left(\overrightarrow{JO}, \overrightarrow{OJ'} \right) \equiv \left(\overrightarrow{OJ}, \overrightarrow{OJ'} \right) \pi \left[2\pi \right] \Leftrightarrow \left(\overrightarrow{JO}, \overrightarrow{OJ'} \right) \equiv -\frac{\pi}{2} \left[2\pi \right] \text{ donc l'angle de f est } -\frac{\pi}{2}.$
 - b) On a: f(J) = O et f(O) = J' et comme les deux triangles OBJ et J'BO sont rectangles en B alors
 - f(B) = B. Le rapport de f est donc $\frac{BO}{BJ}$ = 2 .
- 3. a) Le rapport de g est $\frac{OJ'}{JO} = \frac{BO}{BJ} = 2$.
 - b) Comme g est une similitude indirecte de rapport 2 alors g admet un unique point invariant I.

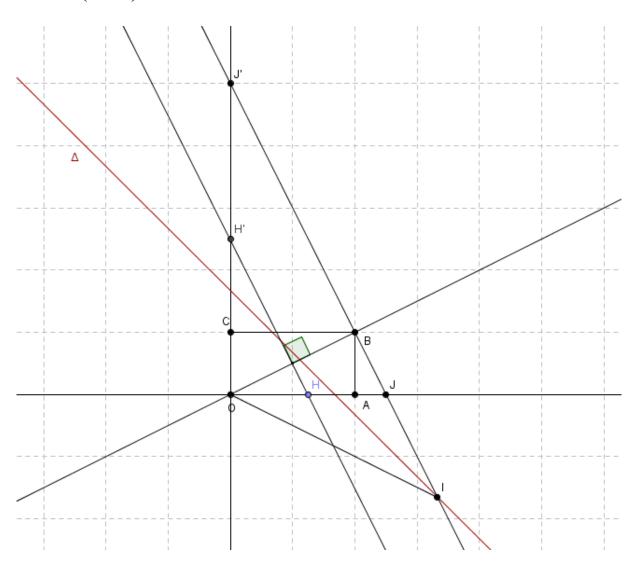
c) $g\circ g(J)=g(g(J))=g(O)=J'$. Or $g\circ g=h_{(I,4)}$, il en résulte : I , J et J' sont alignés .

D' où I appartient à la droite (JJ').

d)
$$h_{(I,4)}(J) = J' \Leftrightarrow \overrightarrow{IJ'} = 4\overrightarrow{IJ} \Leftrightarrow I$$
 barycentre de (J', 1) et (J, -4) $\Leftrightarrow \overrightarrow{J'I} = \frac{4}{3}\overrightarrow{J'J}$.

g(J) = O et les points I, J et O ne sont alignés donc l'axe (Δ) de g est la bissectrice intérieure de

l'angle
$$\left(\begin{array}{c} \rightarrow \rightarrow \\ \text{IJ}, \text{IO} \end{array} \right)$$



Exercice 2: (exo 21 page94 tome 2)

Soit ABC un triangle équilatéral direct. On désigne par I et J les milieux respectifs des segments [AB] et [AC] et par D le symétrique de Q par rapport à C.

- 1. Soit f l'antidéplacement tel que f(C) = A et f(A) = B. Identifier f.
- 2. Soit g la similitude directe telle que g(B) = D et g(I) = C.

Montrer que g(A)= A et déterminer les éléments caractéristiques de g.

$$\rightarrow$$
 \rightarrow \rightarrow

- 3. Soit K le point défini par KA + 2KI = 0.
 - a) Déterminer la nature de $f\circ g$.
 - b) Déterminer $f \circ g(I)$ et $f \circ g(A)$.

$$\rightarrow$$
 \rightarrow \rightarrow

- $\xrightarrow{} \xrightarrow{} \xrightarrow{}$ c) Vérifier que KB+2KA=0 . En déduire que $f\circ g(K)=K$.
- d) Déterminer le rapport de $f \circ g$.
- e) Montrer que l'axe de similitude $f \circ g$ est la perpendiculaire en K à la droite (AB).

Solution:

1. f est l'antidéplacement tel que f(C)= A et f(A) = B d'où $f \circ f(C) = B$. Comme $B \neq C$ alors g n'est pas une symétrie orthogonale et par suite g est une symétrie glissante.

Soit u le vecteur de f et (Δ) l'axe de f :

On sait que
$$f \circ f = t_{\vec{uu}}$$
 et $f \circ f(C) = B$ donc $\vec{2u} = \vec{CB} \Leftrightarrow \vec{u} = \frac{1}{2}\vec{CB}$.

Or I est milieu de [AB] et J milieu de [AC] donc $\stackrel{\rightharpoonup}{u}=\ JI$.

$$f(C) = A \Rightarrow J \in (\Delta)$$
 et $f(A) = B \Rightarrow I \in (\Delta)$; comme $I \neq J$, alors $\Delta = (IJ)$.

2. On a, d'une part : I est milieu de [AB] donc g(I)= C est milieu de g([AB]) = [g(A)D]; d'autre part : C est milieu de [AD].

Il en résulte que g(A) = A.

A est le centre de la similitude directe g.

A est le centre de la similitude directe g.
$$\frac{DC}{BI} = \frac{AB}{\frac{1}{2}AB} = 2 \quad \text{donc le rapport de g est 2.}$$

$$\begin{pmatrix}
\rightarrow \rightarrow \\
BI,DC
\end{pmatrix} \equiv \begin{pmatrix}
\rightarrow \rightarrow \\
BA,CA
\end{pmatrix} \begin{bmatrix}
2\pi
\end{bmatrix} \Leftrightarrow \begin{pmatrix}
\rightarrow \rightarrow \\
BI,DC
\end{pmatrix} \equiv \begin{pmatrix}
\rightarrow \rightarrow \\
AB,AC
\end{pmatrix} \begin{bmatrix}
2\pi
\end{bmatrix} \Leftrightarrow \begin{pmatrix}
\rightarrow \rightarrow \\
BI,DC
\end{pmatrix} \equiv \frac{\pi}{3} \begin{bmatrix}
2\pi
\end{bmatrix}$$

donc l'angle de g est $\frac{n}{3}$.

3. a) f est une similitude indirecte et g est une similitude directe donc $f\circ g$ est une similitude indirecte de rapport 2.

b)
$$f \circ g(I) = f \lceil g(I) \rceil = f(C) = A$$
 et $f \circ g(A) = f \lceil g(A) \rceil = f(A) = B$.

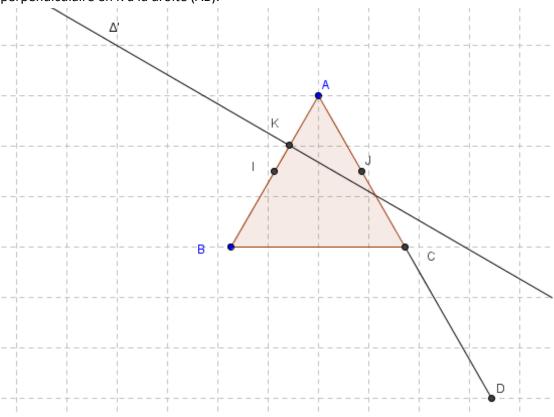
c)
$$KB+BA+2$$
 $(A+AI) = 0 \Leftrightarrow KB+2KA+BA+2AI = 0 \Leftrightarrow KB+2KA = 0$.

Posons $f \circ g(K) = K'$: $KA + 2KI = 0 \Rightarrow K'B + 2K'A = 0$ or KB + 2KA = 0 , il en

résulte : K' = K.

Ainsi : $f \circ g(K) = K$.

d) Comme le rapport de f est 1 et le rapport de g est 2 alors le rapport $f \circ g$ est 2.



Exercice 3: (exo 27 -page 95 - tome 2)

Soit ABC un triangle rectangle en C tel que $\left(\frac{\rightarrow}{BC,BA} \right) \equiv \frac{\pi}{3} \big[2\pi \big]$. La bissectrice intérieure de l'angle

 $\begin{pmatrix} \to \to \\ BA,BC \end{pmatrix} \text{coupe [AC] en O. On désigne par H le projeté orthogonal de O sur (AB) et par H' le milieu de [OA].}$

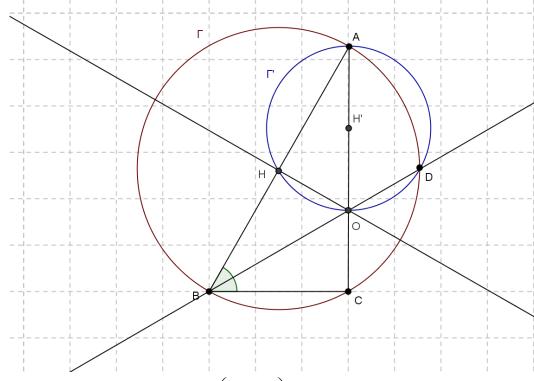
- 1. a) Faire une figure.
 - b) Montrer que le triangle OAB est isocèle et que H est le milieu de [AB].

- 2 . Soit f la similitude directe telle que f(B) = O et f(H) = H'.
 - a) Montrer que le rapport de f est $\frac{1}{\sqrt{3}}$ et que $\frac{\pi}{6}$ est une mesure de son angle.
 - b) Montrer que H' est le milieu du segment [Of(O)]. En déduire que A est le centre de f.
- 3. Les cercles (Γ) et (Γ') de diamètres respectifs [AB] et [AO] se recoupent en D.
 - a) Montrer que les points B, O et D sont alignés.
 - b) Montrer que les triangles BCH et ODH' sont équilatéraux et que f(C) = D.
 - c) Montrer que le quadrilatère ADCH est un losange.
- 4. Soit $g = S_{(DH)} \circ f$.
 - a) Déterminer g(A) et g(B).
 - b) Montrer que g est une similitude indirecte dont on précisera le rapport.
 - c) Soit Ω le centre de g. Montrer que $\Omega D = \frac{1}{3} \Omega A$.

Construire alors le centre Ω et l'axe (Δ) de g.

Solution

1. a) Figure:



b) (BO) est la bissectrice intérieure de $\left(\begin{matrix} \rightarrow & \rightarrow \\ BC, BA \end{matrix}\right)$

$$\operatorname{donc}\left(\overrightarrow{BO},\overrightarrow{BA}\right) \equiv \frac{1}{2} \left(\overrightarrow{BC},\overrightarrow{BA}\right) \left[2\pi\right] \Leftrightarrow \left(\overrightarrow{BO},\overrightarrow{BA}\right) \equiv \frac{\pi}{6} \left[2\pi\right]. \text{ Or}$$

$$\left(\overrightarrow{AB},\overrightarrow{AO}\right) \equiv \left(\overrightarrow{AB},\overrightarrow{AC}\right) \left[2\pi\right] \Leftrightarrow \left(\overrightarrow{BO},\overrightarrow{BA}\right) \equiv \pi - \left(\frac{\pi}{2} + \frac{\pi}{3}\right) \left[2\pi\right] \Leftrightarrow \left(\overrightarrow{BO},\overrightarrow{BA}\right) \equiv \frac{\pi}{6} \left[2\pi\right].$$

Par suite le triangle OAB est isocèle en O.

H est le projeté orthogonal sur (AB) donc (HO) est la médiatrice du segment [AB] ; d'où H est le milieu de [AB].

2 . f est le similitude directe telle que f(B) = A et f(H) = H'.

$$\frac{\mathrm{OH'}}{\mathrm{BH}} = \frac{\frac{1}{2}\mathrm{OA}}{\mathrm{BH}} = \frac{1}{2}\frac{\mathrm{BO}}{\mathrm{BH}} = \frac{1}{2}\frac{1}{\cos\frac{\pi}{6}} = \frac{1}{\sqrt{3}} \quad \text{donc le rapport de f est } \frac{1}{\sqrt{3}} \, .$$

$$\begin{pmatrix}
\rightarrow & \rightarrow \\
BH, OH'
\end{pmatrix} = \begin{pmatrix}
\rightarrow & \rightarrow \\
BA, CA
\end{pmatrix} \begin{bmatrix}
2\pi
\end{bmatrix} \Leftrightarrow \begin{pmatrix}
\rightarrow & \rightarrow \\
BH, OH'
\end{pmatrix} = \begin{pmatrix}
\rightarrow & \rightarrow \\
AB, AC
\end{pmatrix} \begin{bmatrix}
2\pi
\end{bmatrix} \Leftrightarrow \begin{pmatrix}
\rightarrow & \rightarrow \\
BH, OH'
\end{pmatrix} = \frac{\pi}{6} \begin{bmatrix}
2\pi
\end{bmatrix} donc$$

l'angle de f est $\frac{\pi}{6}$.

- b) H est milieu de [BA] donc f(H) = H' est milieu de f([BA]) = [Of(A)]. Comme H' est milieu de [OA] alors f(A) = A d'où A est centre de f.
- 3 . a) $D \in (\Gamma)$ donc $(BD) \perp (AD)$ et $D \in (\Gamma')$ donc $(OD) \perp (AD)$; il en suit : (BD) / (OD); d'où les points B , O et D sont alignés.

b) On a :
$$\left(\frac{\rightarrow}{BC, BA} \right) = \frac{\pi}{3} [2\pi]$$
; d'autre part : H est le centre du cercle (Γ) et $C \in [\Gamma]$ donc

$$\left(\begin{array}{c} \rightarrow \rightarrow \\ \text{HB, HC} \end{array} \right) \equiv 2 \left(\begin{array}{c} \rightarrow \rightarrow \\ \text{AB, AC} \end{array} \right) \left[2\pi \right] \Leftrightarrow \left(\begin{array}{c} \rightarrow \rightarrow \\ \text{HB, HC} \end{array} \right) \equiv \frac{\pi}{3} \left[2\pi \right] \text{ . Ainsi, BCH est un triangle \'equilat\'eral.}$$

Les points O et D appartiennent au cercle (Γ') de centre H' donc H'O = H'D;

Le triangle ABD est rectangle en D et $\left(\begin{array}{c} \rightarrow \\ \text{BD}, \text{BA} \end{array} \right) \equiv \frac{\pi}{6} \left[2\pi \right] \quad \text{donc} \quad \left(\begin{array}{c} \rightarrow \\ \text{AB}, \text{AD} \end{array} \right) \equiv \frac{\pi}{3} \left[2\pi \right] \text{ ; il ne}$

résulte :
$$\begin{pmatrix} \rightarrow & \rightarrow \\ \text{H'D, H'O} \end{pmatrix} \equiv 2 \begin{pmatrix} \rightarrow & \rightarrow \\ \text{AD, AO} \end{pmatrix} [2\pi] \Leftrightarrow \begin{pmatrix} \rightarrow & \rightarrow \\ \text{H'D, H'O} \end{pmatrix} \equiv \frac{\pi}{3} [2\pi]$$
. Ainsi le triangle ODH' est

équilatéral.

On en déduit que les triangles BCH et ODH' sont semblables et directs, par suite il existe une unique similitude directe S qui envoie B sur O, C sur D et H sur H'. Or f est une similitude directe qui envoie B sur O et H sur H', donc f(C) = D.

c) La droite (BD) est la bissectrice de l'angle $\left(egin{array}{c} \to \to \\ BC, BH \end{array} \right)$ donc (BD) est la médiatrice de [CH]

d'où CD = DH et comme HC = HA alors HC = HA = HD . Il en résulte : le triangle CDH est équilatéral ;

Or
$$\left(\overrightarrow{AB}, \overrightarrow{AH} \right) \equiv \frac{\pi}{3} [2\pi]$$
 ; donc le triangle ADH est équilatéral.

Par suite, le quadrilatère ADCH est un losange.

$$\text{4. a) } g\left(A\right) = S_{(DH)} \circ f\left(A\right) = S_{(DH)}\left(A\right) = C \ \text{ et } \ g\left(C\right) = S_{(DH)} \circ f\left(C\right) = S_{(DH)}\left(D\right) = D \ .$$

b) $S_{(DH)}$ est une similitude indirecte de rapport 1 et f est une similitude directe de rapport $\frac{1}{\sqrt{3}}$ donc g est une similitude indirecte de rapport $\frac{1}{\sqrt{3}}$.

c) Soit
$$\Omega$$
 le centre de g , $g \circ g = h_{\left(\Omega, \frac{1}{3}\right)}$ et $h_{\left(\Omega, \frac{1}{3}\right)}(A) = g \circ g(A) = g\left[g(A)\right] = g(C) = D$

donc
$$\overrightarrow{\Omega D} = \frac{1}{3} \overrightarrow{\Omega A}$$
.

$$\frac{\rightarrow}{\Omega D} = \frac{1}{3} \frac{\rightarrow}{\Omega A} \Leftrightarrow 3\Omega D - \Omega A = 0 \quad \text{donc } \Omega \text{ est le barycentre de (D, 3) et (A, -1) d'où}$$

$$\rightarrow$$
 D $\Omega = -\frac{1}{2}$ DA.

Comme g(C) = D et (Ω , C et D ne sont pas alignés) alors l'axe (Δ) de g est la bissectrice

intérieure de l'angle $\left(egin{array}{c} \longrightarrow & \longrightarrow \\ \Omega C, \Omega D \end{array}
ight)$

